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Background

 Friction Stir Welding (FSW) is a welding technique that uses frictional 
heating combined with forging pressure to produce high strength bonds.

 Attractive for aerospace applications
– Can result in considerable cost and weight savings, by reducing 

riveted/fastened joints, and part count 
– Can weld metals that are difficult to weld with conventional methods

 Space shuttle external tank

 Although residual stresses in FSW are generally lower when compared to 
conventional fusion welds, recent work has shown that significant tensile 
residual stresses can be present in the weld after fabrication

 Residual tensile stresses in the weld can lead to:
– Faster crack initiation 
– Faster crack propagation 
– Could also result in stress corrosion cracking (SCC) 

 Therefore, laser shock peening was investigated as a means of moderating 
the tensile residual stresses produced during welding
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Background

 Nugget or the stirred zone
– The grain structure usually fine and equiaxed

 Recrystalization from the high temperatures
 Extensive plastic deformation  

 Thermo-mechanical affected zone (TMAZ) 
– Lesser degree of deformation and lower temperatures 
– Recrystallization does not take place
– The grain structure in elongated, with some considerable distortions

 Heat affected zone (HAZ)
– Unaffected by mechanical effects, and is only affected by the friction heat 

 Use of FSW is expanding and is resulting in welded joints being used in critical load bearing structures 
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Friction Stir Welding

 The alloy selected for this investigation was a 1.25 cm thick 2195-T8 aluminum lithium alloy.
 Possess many superior properties and is well suited for many aerospace applications due to its low density, 

high strength, and corrosion resistance. 
 For the welding process, a rotational speed of 300 RPM in the counter-clockwise direction and a translation 

speed of 15 cm/min were used. 
 The dimensions of the FSW panels were 91 cm x 30 cm x 1.25 cm.
 To verify the integrity of the weld, several bending tests using strip specimens were performed. 
 The FSW specimens were inspected visually afterward with no crack indications revealed.
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Microstructure
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Laser Peening
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Shot Peening
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Peening Methods

Laser Peening
• 1 mm thick laminar tamping layer
• Samples covered using a 0.22 mm       

thick aluminum tape
• Applied using a square laser spot
• Laser power density of 5 GW/cm2

• 18 ns in duration
• Spots were overlapped 3%
• Applied at a frequency of 2.7 Hz 
• Using a 1 micrometer wavelength
• Both faces of samples were peened

FSW

Shot Peening
• 0.59 mm glass beads
• Almen intensity of 0.008-0.012
• Both faces of samples were peened
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Residual Stresses

XRD
Surface Residual Stresses
Determined by the x-ray diffraction technique

Contour Through Thickness Residual Stresses
Determined by the contour method
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Contour Method

1

2

3

1. Sectioning the Sample 
- Sample is fixed to a rigid backing plate 
- Sample is cut along the measurement plane with an 

EDM wire 

2.  Measuring Deformation 
- After sectioning a deformed surface shape is produced

-Resulting from the relaxed residual stresses
-The displacement is measured on both sectioned 
surfaces using a coordinate measuring machine (CMM) 

3.  Estimating the Residual Stresses 
- The displacements from both cutting surfaces is averaged
- The noise in the measurements is filtered 
- The original residual stresses are calculated from the 
measured contour using a finite element model (FEM) 

Through-thickness
Residual Stresses
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Residual Stresses in FSW Specimen
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Residual Stresses in FSW Specimen
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Through Thickness Residual Stress

Two-dimensional map of the measured residual stress for the unpeened FSW specimen

Two-dimensional map of the measured residual stress for the shot peened FSW specimen

Two-dimensional map of the measured residual stress for the laser peened FSW specimen
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Through Thickness Residual Stress
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Mechanical Properties

Investigate the effects of peening

Microhardness

Tensile Properties Surface Effects
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No Peening Laser Peening
(1 layer)Shot Peening Laser Peening

(3 layers)
Laser Peening 

(6 layers)

Peening Conditions
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Tensile Properties

 Conventional transverse tensile testing only provides the 
overall strain experienced by the sample

 It is necessary to determine local strains and equivalent tensile 
properties across the weld 
– Evaluated at different regions of the weld using an ARAMIS system 
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ARAMIS System

Step 1:
•A random or regular pattern with good 
contrast is applied to the surface of the test 
object and is deformed along with the 
object. 

•As the specimen is deformed under load, 
the deformation is recorded by the cameras 
and evaluated using digital image 
processing. 

Step 2:
•The initial image processing defines a set 
of unique correlation areas known as 
macro-image facets, typically 5-20 pixels 
across.

Step 3:
•These facets are then tracked in each 
successive image with sub-pixel accuracy.

•Strains are calculated at different regions 
across the weld region.

Intrinsic 
Tensile 

Properties

Step 1 Step 2 Step 3
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Tensile Properties for 2195
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Tensile Properties

 The weld nugget exhibited the lowest tensile properties when 
compared to other locations across the weld
– Strengthening precipitates in 2195 AA were no longer present in the weld 

nugget 
 Temperature during joining was above the solution temperature of the hardening 

precipitates 
– This region of the weld will therefore be relatively ineffective in inhibiting 

dislocation motion 
 The localized strain in the softened area of the weld will result in lower 

mechanical properties
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Tensile Properties at Weld Nugget
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Tensile Properties at TMAZ
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Global Yield and Ultimate Stresses
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Strain distribution across the weld
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EBSD Grain Size Difference

Grain size histogram for laser peened specimen Grain size histogram for unpeened specimen
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Tensile Properties

 Laser peened demonstrated:
– 60% increase in the yield strength in the weld nugget in the FSW joint
– 11% increase to the ultimate tensile strength in the weld nugget in the FSW joint
– In contrast, shot peening exhibited only modest improvement to the tensile 

properties (3%)

 The increase in mechanical properties from the laser peening 
was mainly attributed to:

– High levels of compressive residual stresses introduced during the high energy 
peening that can reach significantly deeper than shot peening

– Increase in dislocation density from the peening 

 Laser peening using six layers resulted in a 35% reduction to 
ductility
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Tensile Properties (360 F)
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Tensile Properties (-150 F)
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Microhardness (Top)
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Microhardness

 Significant hardness was achieved by processing the FSW 2195 AA 
samples with laser peening

– Hardness increase around 28% in the top surface
– Hardness increase around 21% in the bottom side of the weld nugget region

 Hardness levels due to laser peening increased proportionally with the 
number of peening layers in the 2195 aluminum alloy

 The polishing that takes place prior to microhardness measurement can 
wipe out all the hardness effects produced by the shot peening.

– This is because the hardening effects from shot peening only affect a shallow depth in the material.

 Hardness profiles across the weld were wider on the top side of the weld 
compared to the bottom surface.  

– That was attributed to bottom plate contact with the backing plate which acts as a heat sink, therefore 
reducing the metallurgical transformations that take place at high temperatures.
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Surface Roughness

Shot Peening Laser peening
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Surface Roughness

1.328 µm1.815 µm1.336 µmLaser Peened 
(6 layers)

2.884 µm5.761 µm5.029 µmShot Peened Ra: Roughness average
Rpk: Maximum peak height
Rvp: Maximum valley depth 

0.93 µm1.429 µm1.087 µmUnpeened

Condition Ra Rpk Rvk Nomenclature
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Surface Roughness
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Surface Roughness
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Surface Roughness
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Surface Wear/Friction

Different
Speeds

Different 
Loads

Different
Peening

Different
Materials
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Friction
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•Testing done with identical contact force (10 N) and speed (0.5 cm/sec)
• Shot peening appears to provide higher steady state friction coefficients.  
•Long term friction coefficients for laser peened and bare surfaces were 
comparable.

Shot Peening

Base Material
Laser Peening
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Wear 

No peening Laser peening Shot peening

Influence of Depth Wear Resistance on Al 2195 as a 
function of peening

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

No Peening Laser Peening Shot Peening

De
pt

h 
(µ

m
)

2195 Bottom 2N

2195 Bottom 10N





43

Cryogenic Temperatures (-150F)

Elevated Temperatures (360 F)

Room TemperatureFCGR

FCGR

FCGR

Fatigue Crack Growth Rates

Shot Peening Laser PeeningNo Peening
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Fatigue Samples 

Through Thickness 
Cracks
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a vs. N for R=0.1 (RT)
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a vs. N for R=0.7 (RT)

0

5

10

15

20

25

30

0 100000 200000 300000 400000 500000 600000 700000 800000 900000

Number of Cycles (N)

C
ra

ck
 L

en
gt

h 
(m

m
)

No Peening
Laser Peening
Base Material



47

A vs. N for R=0.1 (180c)
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A vs. N for R=0.1 (-100c)
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Fractured Surfaces
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Conclusions

– The laser peening process can result in considerable 
improvement to crack initiation, propagation, and mechanical 
properties in FSW 
 Longer hardware service life

– Improve processed hardware safety
 By producing higher failure tolerant hardware, & reducing risk

– Lower hardware maintenance cost 
 Longer hardware service life, and lower hardware down time

Application of this proposed technology will result in 
substantial benefits and savings throughout the life of the 
treated components




